

Fundamentals of Hadron Colliders

FNAL Jan09

Mike Syphers, Fermilab syphers@fnal.gov

Luminosity and its Realization Acceleration, Transverse Focusing

Tevatron LHC
Challenges at High *E/L*Luminosity Optimization

Introduction

- Can only introduce the subject, so mostly discuss the physics of particle accelerators, touching on the technology, relevant to large hadron colliding beams synchrotrons
- U Will cover:
 - luminosity; how to meet the requirements?
 - Accelerator Basics, the Tevatron and the LHC
 - Challenges at high energies

Collider Requirements

D Energy: collider

$$m^*c^2 = 2 m_0 c^2 \gamma_{beam}$$

vs. fixed target

$$m^*c^2 = \sqrt{2} m_0 c^2 \left[1 + \gamma_{beam}\right]^{1/2}$$

- U Luminosity of Bunched-Beam Collider
 - look at frequency of collisions...

$$\mathcal{R} = \left(\frac{\Sigma}{A} \cdot N\right) \cdot (f \cdot N)$$

$$= \frac{f N^2}{A} \cdot \Sigma$$
 $\mathcal{L} \equiv \frac{f N^2}{A} \qquad (10^{34} \text{cm}^{-2} \text{sec}^{-1} \text{ for LHC})$

Integrated Luminosity

 \square Suppose there are B bunches of particles circulating in each diretion in the accelerator; then,

$$f_0 = \text{rev. frequency}$$

 $B = \text{no. bunches}$

$$\mathcal{L} = \frac{f_0 B N^2}{A}$$

In ideal case, particles are "lost" only due to "collisions":

$$BN = -\mathcal{L} \Sigma n$$

(n = no. of detectorsreceiving luminosity $\mathcal{L})$

O So, in this ideal case,

$$\mathcal{L}(t) = \frac{\mathcal{L}_0}{\left[1 + \left(\frac{n\mathcal{L}_0\Sigma}{BN_0}\right)t\right]^2}$$

Ultimate Number of Collisions

$$\square$$
 Since $\mathcal{R} = \mathcal{L} \cdot \Sigma$ then, $\# \text{events} = \int \mathcal{L}(t) dt \cdot \Sigma$

O So, our integrated luminosity is

$$I(T) \equiv \int_0^T \mathcal{L}(t)dt = \frac{\mathcal{L}_0 T}{1 + \mathcal{L}_0 T(n\Sigma/BN_0)} = I_0 \cdot \frac{\mathcal{L}_0 T/I_0}{1 + \mathcal{L}_0 T/I_0}$$

asymptotic limit:

so, ...
$$\mathcal{L} = \frac{\frac{BN_0}{n\Sigma}}{\frac{f_0BN^2}{A}}$$

(will come back to luminosity at the end)

How to Make Collisions?

- O Simple Model of Synchrotron:
- Accelerating device + magnetic field to bring particle back to accelerate again
- D Field Strength -- determines size, ultimate energy of collider

bend radius:
$$ho = rac{p}{e \, B} \; ; \;\; R =
ho/f \quad (f pprox 0.8 - 0.9)$$

(fraction of circumference with bending)

- ex:

$$B = 1.8 \text{ T}, \quad p = 450 \text{ GeV/c} \quad f = 0.85 \rightarrow R \approx 1 \text{ km}$$

Magnets

Diron-dominated magnetic fields

$$B = \frac{2\mu_0 N \cdot I}{d}$$

- iron will "saturate" at about 2 Tesla

- D Superconducting magnets
 - field determined by distribution of currents

$$B_{ heta} = \frac{\mu_0 J}{2} r$$
 current density, J

"Cosine-theta" distribution

$$B_x = 0, \quad B_y = \frac{\mu_0 J}{2} \ d$$

Superconducting Designs

- Tevatron
 - 1st SC accelerator
 - 4.4 T; 4°K

Tevatron Dipole

Single phase Helium
Coil Collar
Two-phase Helium
tube

Liquid Nitrogen Jacket

Numerical Example:

$$B = \frac{\mu_0 J}{2} d$$

$$= \frac{4\pi \text{ T m/A}}{10^7} \frac{1000 \text{ A/mm}^2}{2} \cdot (10 \text{ mm}) \cdot \frac{10^3 \text{mm}}{\text{m}}$$

$$= 6 \text{ T}$$

0 (LHC -- 8 T; 1.8°K

Superconducting Designs

- Tevatron
 - 1st SC accelerator
 - 4.4 T; 4°K

Tevatron Dipole

Single phase Helium

Coil Collar

Two-phase Helium

Liquid Nitrogen Jacket

Numerical Example:

$$B = \frac{\mu_0 J}{2} d$$

$$= \frac{4\pi \text{ T m/A}}{10^7} \frac{1000 \text{ A/mm}^2}{2} \cdot (10 \text{ mm}) \cdot \frac{10^3 \text{mm}}{\text{m}}$$

$$= 6 \text{ T}$$

0 (LHC -- 8 T; 1.8°K

Acceleration

Imagine: particle circulating in field, B, with orbit frequency ω . Along orbit, arrange particle to pass through a cavity with max. voltage V, oscillating at frequency $h x f_{rev}$ (where h is an integer); suppose particle arrives near time of zero-crossing

thus, a restoring force --> energy oscillation "Synchrotron Oscillations"

- next, slowly raise the strength of B; if raised adiabatically, oscillations continue about the "synchronous" momentum, defined by $p/e = B \cdot R$ for constant R, as B increases
- Nonlinear restoring force of the RF generates stable phase space regions
 - $h = f_{rf}/f_{rev} = \# of possible bunches$ bunched beam

Bunched Beam

DEX: Bunch by adiabatically raising voltage of RF cavities

Keeping Focused

- In addition to increasing the particle's energy,
 must keep the beam focused transversely
- Standard focusing scheme: alternating system of focusing and defocusing lenses
- Quadrupole Field will focus in one transverse plane, but defocus in other; if alternate, can have net focusing in both
 - for equally spaced infinite set, net focusing requires F>L/2

$$F =$$
focal length, $L =$ spacing

- FODO cells:

Example: FNAL Main Injector

Bending Magnets

Focusing Magnets

"separated function" first used at Fermilab

Fermilab Logo

12

Particle Trajectories

Analytical Description:
$$\frac{dx'}{ds} = \frac{d^2x}{ds^2} = -\frac{eB'(s)}{p}x$$

$$K(s) = \frac{e}{p} \frac{\partial B_y}{\partial x}(s)$$

(Hill's Equation)

$$x'' + K(s)x = 0$$

Nearly simple harmonic; so, assume soln.:

$$x(s) = A\sqrt{\beta(s)}\sin[\psi(s) + \delta]$$

Particle Trajectories

$$\square$$
 Analytical Description: $\frac{dx'}{ds} = \frac{d^2x}{ds^2} = -\frac{eB'(s)}{n}x$

$$\frac{dx'}{ds} = \frac{d^2x}{ds^2} = -\frac{eB'(s)}{p}x$$

$$K(s) = \frac{e}{p} \frac{\partial B_y}{\partial x}(s)$$

(Hill's Equation)

$$x'' + K(s)x = 0$$

Nearly simple harmonic; so, assume soln.:

$$x(s) = A\sqrt{\beta(s)}\sin[\psi(s) + \delta]$$

Hill's Equation and the "Beta Function"

- We see that an "amplitude function" exists, so taking x''+K(s)x=0 and assuming $x(s)=A\sqrt{\beta(s)}\sin[\psi(s)+\delta]$
 - can show that eta'' + 4Keta = const.
- In a "drift" region (no focusing fields),
 - beta function is a parabola in drift regions
 - if pass through a waist at s = 0, then,

So, optical properties of synchrotron (β) are now decoupled from particle properties (A, δ) and accelerator can be designed in terms of optical functions; beam size will be proportional to $\beta^{1/2}$

Ex: Tevatron Cell

$$\beta_{max,min} = 2F \sqrt{\frac{1 \pm L/2F}{1 \mp L/2F}}$$

Long Straight Section

- a "matched insertion"
 that propagates the
 amplitude functions
 from their FODO
 values, through the
 new region, and
 reproduces them on the
 other side
- Here, we see an LHC section used for beam scraping

Interaction Region

Put it all Together

make up a
synchrotron out
of FODO cells for
bending, a few
matched straight
sections for
special purposes...

LHC Layout

- Mostly FODO cells, with beams separated horizontally in common cryostats
- straight regions for detectors, injection, RF, beam scraping, instrumentation, beam dumps, etc.
- Symmetry insures
 equal path lengths for
 two beams

Tevatron: 2 Beams in 1 Pipe

Helical orbits through 4 standard arc cells of the Tevatron; beam envelopes are shown

36 bunches in each beam, separated by ~400 ns

Friday, January 9, 2009

20

LHC: 2 Beams in 2 Pipes

- Many more (~3000) bunches in each (separated) LHC beam; but, for about 120 m near the IP, contained in the same beam pipe
- This would give ~30 bunch interactions through this region
- Want a single Head-on collision at the interaction point (IP), but will still have long-range interactions on either side
- Beam size grows away from IP, and so does separation; can tolerate beams separated by ~10 sigma

$$\frac{d/\sigma = \theta \cdot (\beta^*/\sigma^*) \approx 10}{\theta = 10 \cdot (0.017)/(550) \approx 300 \ \mu \text{rad}}$$

Beam Stored Energy

- □ Tevatron
 - $-10^{13} \cdot 10^{12} \text{ eV} \cdot 1.6 \cdot 10^{-19} \text{ J/eV} \sim 2 \text{ MJ}$
- O LHC
 - 3.10¹⁴ · 7.10¹²eV · 1.6 · 10⁻¹⁹ J/eV ~ 300 MJ per beam!
- \square Power at IP's -- rate of lost particles x energy: $\mathcal{L} \cdot \Sigma \cdot E$
 - Tevatron (at 4K) -- ~4 W at each detector region
 - LHC (at 1.8K) -- ~1300 W at each detector region

Collimation Systems

- □ Tevatron -- several collimators/scrapers
- □ LHC -- ~ 100 collimators

Careful control of collimators, beam trajectory, beam envelope are required

Back to Luminosity...

☐ Can now express in terms of beam physics parameters; ex.: for short, round beams...

$$\mathcal{L} = \frac{f_0 B N^2}{4\pi\sigma^{*2}} = \frac{f_0 B N^2 \gamma}{4\epsilon \beta^*}$$

(rms beam size)
$$\sigma \propto \sqrt{\beta}$$

I If different average bunch intensities, and/or different transverse beam sizes for the two beams,

$$\mathcal{L} = \frac{f_0 B N_1 N_2}{2\pi (\sigma_1^{*2} + \sigma_2^{*2})} = \frac{f_0 B N_1 N_2 \gamma}{2\beta^* (\epsilon_1 + \epsilon_2)}$$

and assorted other variations...

Hour Glass

- If bunches are too long, the rapid increase of the amplitude function away from the interaction
 - "point" reduces luminosity

$$\longrightarrow \mathcal{L} = \mathcal{L}_0 \cdot \mathcal{H}$$

- Tevatron:
 - $\sigma_s \approx 2\beta^*$
- LHC:
 - $\sigma_s << \beta^*$

Crossing Angle

Though the hourglass effect will not be an issue in the LHC, we saw that a crossing angle is required — will also reduce luminosity from previous expressions

-- however, since bunches are indeed shorter in LHC, effect due to crossing angle in LHC is only ~15%:

$$\mathcal{L} = \mathcal{L}_0 \cdot \frac{1}{\sqrt{1 + (\alpha \sigma_s / 2\sigma^*)^2}}$$

 $\alpha = \text{full crossing angle}$

Back to Integrated Luminosity...

- need to include effect of particle loss due to other means
 - ex: scattering off residual gas
- \square suppose diffusion effects cause $d\sigma^2/dt$ (they do!), and particles eventually strike collimators:

Tevatron example:

Optimization of Integrated Luminosity

- ☐ The ultimate goal for the accelerator -- provide largest total number of collisions possible
- So, optimize initial luminosity, according to turn-around time, emittance growth rates, etc. to produce most integrated luminosity per week (say)
 - example: recent Tevatron running

Luminosity Optimization

☐ For Tevatron, balance rate at which integrate luminosity against the rate at which we can produce antiprotons

Tevatron Operation

Here, need to balance the above with the production rate of antiprotons to find optimum running conditions

Friday, January 9, 2009

30

Tevatron Performance

- $E_{cm} = 1.96 \text{ TeV}$; operating >350 times original design luminosity
- Upgrades since 1986 --
 - Linac upgrade; new Main Injector; Interaction Region magnets; improved magnet cooling; more bunches (6 -> 36); "Recycler" (antiproton storage); electron cooling; new stochastic cooling systems; new Beam Position Monitoring systems, other diagnostics; much maintenance -- alignment, magnet fixes, etc.; much more ...

Integrating Luminosity at LHC

- ☐ For LHC, protons are readily available; beams are designed to be of equal intensity
- O So, will balance the decay of luminosity...

$$\mathcal{L}(t) = \frac{\mathcal{L}_0}{\left[1 + \left(\frac{n\mathcal{L}_0\Sigma}{BN_0}\right)t\right]^2} \cdot \mathcal{F}(t)$$

... against the time it takes to regenerate initial conditions, beam growth rates and loss mechanisms, etc.

From LHC Design Report: The total luminosity per year attains a maximum if the run time satisfies the following equation

$$ln(\frac{T_{\text{turnaround}} + T_{\text{run}}}{\tau_L} + 1) = \frac{T_{\text{run}}}{\tau_L}.$$
(3.15)

Assuming a luminosity lifetime of 15 h one obtains optimum run times of 12 h and 5.5 h for an average turnaround time of 7 h and 1.2 h, respectively. Inserting the nominal peak LHC luminosity and the optimum run times into Eqs. (3.13) and (3.14) one obtains for the maximum total luminosity per year between 80 fb^{-1} and 120 fb^{-1} depending on the average turn around time of the machine.

What's been left out?

- □ Lots...
 - synchrotron radiation
 - Coupling of degrees-of-freedom transverse x/y, trans. to longitudinal
 - Space charge interactions (mostly low-energies)
 - Wake fields, impedance, coherent instabilities
 - Beam cooling techniques
 - RF manipulations
 - Resonant extraction
 - Crystal collimation
 - Magnet, cavity design
 - Beam Instrumentation and diagnostics
 - much more...

Further Schooling...

- US Particle Accelerator School:
 - http://uspas.fnal.gov
 - Twice yearly, January/June

- O CERN Accelerator School:
 - http://cas.web.cern.ch
 - Spring (specialized topics)
 - autumn (intro/intermediate)

email: <u>syphers@fnal.gov</u>

Further Reading

- D. A. Edwards and M.J. Syphers, An Introduction to the Physics of High Energy Accelerators, John Wiley & Sons (1993)
- S. Y. Lee, Accelerator Physics, World Scientific (1999)
- E.J. N. Wilson, An Introduction to Particle Accelerators, Oxford University Press (2001)

and many others...

- O conference Proceedings --
 - Particle Accelerator Conference (2007, 2005, ...)
 - European Particle Accelerator Conference (2006, 2004, ...)
 - Asian Particle Accelerator Conference (2007, 2004, ...)